User Attribute Engagement: a glance

Summary

The users engage with candidates daily and have an inherent set of desired attributes that they are looking for. When a
user looks at a profile and determines from the shown attributes, other than the profile pictures, whether to like or pass
a certain candidate there is a lot of information to be gained from these attributes which can be used to improve a
users’ candidate quality and overall dating experience.

An example of a user’s attributes:

Andrea - Age
28 years old - Bio
“The world can be amazing when you're slightly - Dating Intent
strange.” Heioht
-Harley Quinn - heig
- Hometown
Located in Bloomington, lllinois - Job and Employer
- Education Level
Looking for chatting, friendship, long-term relationship - Children Info
5 5" - Religious Info
- Languages
Underwriting Assistant at State Farm - Hobby

- IG connected

Heartland Community College
- Fun-fact answer

College degree - Distance
Doesn't have kids

Agnostic

&> English

Hypothesis

Profile attributes are important factors to help user make decision of like or pass. This assumption leads us to the next
that the attributes that are present/not present on a profile that a user likes/passes may present a pattern that can be
picked up on and used to better rank candidates.

A more detailed hypothesis

e Users have preference on profile attributes. the existence and the value of the profile attributes plays an
important role when viewer make the decision of like or pass.

e For some of these profile attributes, users can explicitly set preferences to filter out un-wanted candidates. The
filtering applies at the candidate retrieval stage.

e However,

o filters are usually used to filter out un-wanted candidates. users could still have preference among the
candidates passed the filters.

o user does not always use all filters, and users set some filters as soft.

© not all attributes have filters, e.g. number of photos, occupation filled, has hobby, etc

o some user does not know or specify their attribute preference but the preference may shown in
engagement data

® So there is opportunities for ranking to personalize the ranking through learning users preference on profile
attributes.

e When users interact with dating profiles they are creating a set of implicit ratings for every profile attribute they
see and we can capitalize on this by being able to record these interactions and transform them into statistics to
have our models learn from them.

For exemplar purposes

® |et us consider person A:

o They are a picky dater and they want their partner to be as invested into the dating scene as them and they
are more likely to pick candidates that have a bio, list their smoking and drinking preferences and have at
least one hobby on their profile.

© Now this person can’t set these filters explicitly so they have to go through a list of profiles that weren’t
ranked with these attributes in mind before they can choose candidates that fit closer to their actual
preference. If we were to pick up on these implicit ratings for attributes present/absent on candidate
profiles that are liked we would be able to better present candidates to our users.

Attribute Preference Dense Feature Set

1. Identify and create (if needed) features and meta attributes:

e We take a look at the profile attributes and then we try to come up with features that would sufficiently be able
to encapsulate their properties and be helpful to the model. We came up with 3 categories for this classification
of attributes: Existence, Categorical and Continuous.

e Existence Attributes (can also be seen as categorical since yes and no can be categories of response) that denote
whether a certain attribute has been filled or not. In this case we added new attributes that could capture
attribute existence preferences as well since some people might not engage with profiles which don’t have
attributes filled out; we extended the dataswarm pipeline to add these in dating_engagement_user_attribute
table

For example:

B has_intro

® has_job

® has_employer

B has_hometown
® has_hobby

® has_height

B has_language

B has_story

B has_fun_fact

® has_ig_connected

® has_multiple_photos

n User Profile Attribute Coverage (

® has_hometown has_hobby @ has_height @ has_language has_story

Categorical Attributes from the low cardinality features (limited attribute option). For example:

o Education Level: [high school, college, grad school, unknown] - [1,2,3,0]

[e]

Children Info: [has, no, unknown] - [1,2,0]
o Smoking Preference: [never, often, always, occasionally] - [1,2,3,4,0]

o Drinking Preference: [never, often, always, occasionally] - [1,2,3,4,0]

Categorical Attribute Coverage (i)

19. Jul

@ education_level children @ smoking_frequency
@ drinking_frequency

Continuous Attribute. these attributes are real numbers. For example:
o Age
© Height
o Intro_text_length
© Num_photos
© Num_dating_questions_answered
o Num_hobbies

o Distance

e Code Pointer for extended dataswarm table and the diff:

o _https://fburl.com/diffusion/902svy76

2. Capturin
o

users attrib
D21863638, D21854736

ute preferences

After we have established these attributes, we would like to gain engagement statistics in order to get user preferences
regarding these said attributes.

-

o

~

; . Attribute Engagement
Profile Attributes 949
Features
' ™ ' ™
>
) . o 1. Categorical Counter
1. Existence Attributes > Features
A A A A
' ™ ' ™
]] - 2. Categorical Ratio
2. Categorical Attributes > Features
»

e vy e vy
' ™ ' ™
3. Continuous Attributes > 3. Continuous Features
e A h. A

/ - /

e We decided on metrics that made the most sense to us to capture a user’s attribute engagement preferencesin a
meaningful manner.

o For the Existence and Categorical attribute types we used:

® Counter features to keep a count of the number of likes/passes sent for a certain attribute’s
presence/absence and the separate categories it can take

O

These features are a count of the number of outbound likes/passes a user sends to a profile
with/without the attribute in the past 14 days.

They are categorized based on the Dating Subsurface, Category of the attribute and
Engagement Type.

eg: VIEWER_ATTRIBUTE_ENGAGEMENT_DRINKING_FREQUENCY_DH_NEVER_LIKE_14D is a categorical
user attribute engagement counter feature which counts the number of likes a viewer sent in
the past 14 days from the dating home subsurface on profiles that had drinking frequency as
“NEVER”.

m Ratio features to keep the like rates for these attributes.

O

These features capture the like rate of the user’s engagement for the specific subsurface and
feature category in the past 14 days.

eg: VIEWER_ATTRIBUTE_ENGAGEMENT_SMOKING_FREQUENCY_DH_NEVER_LIKE_RATE_14Dis a
categorical user attribute engagement ratio feature which has the ratio of likes sent in the past
14 days form the dating home subsurface to candidates that have the smoking frequency as
never. (feature::subsurface::attribute_val::like / feature::subsurface::attribute_val::(like+pass))

o For the Continuous attribute types we used the following statistics:

https://fburl.com/diffusion/9o2svy76

® avg
m std

® p50
® count
® min
B max

B e.g: VIEWER_ATTRIBUTE_ENGAGEMENT_INTRO_TEXT_LENGTH_ALL_AVG_LIKE_14D is a continuous user
attribute engagement feature which measures the average length of intro text bios of all the
candidates that the user liked in the past 14 days from all subsurfaces.

Dense Feature Set Implementation

1. Converting the counters/ratio of existence/categorial types and stats of continuous types
into hive table schema of <user id, map<feature id, feature value>> for building laser tier

e We start converting these features that we just created in dataswarm into laser retrievable format or turning them
into maps with the format map<feature_ids, feature_vals>

a. We deterministically generate our feature ids in the pipeline itself by using a base_id

b. To this we add specific offsets that are fixed for a certain feature and subsurface and then increment it for

engagement type and attribute values, thus guaranteeing unique feature ids as long as the offsets are set
with enough width.

e The idea was to make it really easy to scale this algorithm for other features sets by reusing our feature id
generation logic and make it even easier to add new attributes by simply adding a feature block like this to the

attribute set:

"education_level": {

3,

"col_name": "education_level",
"type": "VARCHAR",
"candidate_transform": """
CASE
WHEN education_level IS NOT NULL AND education_level != 'prefer_not_tc
THEN education_Tlevel
ELSE 'unknown'
END
mnn ,
"is_category": True,
"categories": ["unknown", "grad_school", "college", "high_school"],
"is_used_in_engagement_counter": True,
"feature_id_offset": 0,

o We have accounted for enough gap between the ids that in the future if we wish to add more features,
subsurfaces or continuous statistics we would just need to add those to our original keysets and the
algorithm would generate ids and insert them into the tables on its own. Hence it is super easy to scale and
can be reused for other feature sets as well since we define a general function that takes these keysets and
base ids as arguments.

o We also guarantee deterministic dictionary access hence the ids won’t spuriously change.

e After creating our laser source table in hive we can create a laser tier for our features.

https://mail.python.org/pipermail/python-dev/2017-December/151283.html

Level Start Time Duration Title

SEV3 2020/06/22 8:35pm 4 weeks Read availability loss in logdevice.scribe.ld.atn-7

Advanced options

Tier Name

dating_conti _attribute _ t_feature
laser.dating_continuous_attribute_engagement_feature

dating_conti _attribute _ t_feature_cpp

laser.dating_continuous_attribute_engagement_feature_cpp

dating_user_attribute_engagement_feature_2 cpp
laser.dating_user_attribute_engagement_feature_2_cpp

dating_user_attribute_engagement_feature_2
laser.dating_user_attribute_engagement_feature_2

dating_user_attribute_engagement feature
laser.dating_user_attribute_engagement_feature

dating_user_attribute_engagement_feature_cpp
laser.dating_user_attribute_engagement_feature_cpp

2. Create feature fetchers

e Create Feature Fetchers in cpp, php and mocha

e Add the required unit tests and local testing using these guides lDating Live Feature Fetcher Design lFeature
Fetcher Comparison

e Side task worked on: Adding a new feature id retrieval logic T69281096

Training models and conducting offline evaluations of these new dense
features:

e Now that we have our features ready we want to backfill our laser tables with enough data for our model
training.

e After backfilling the laser tables we inject those features into the mtml_model_training_random_noise and
table dating_home_mtml_training, using the offline_feature_injection_with_feature_id.py script Xiaoye
wrote.

e After we've injected the features into out training and eval datasets we can launch model training from the
fblearner Ul https://fburl.com/mlhub/0jfwsvio

https://www.internalfb.com/intern/diff/D22381187/
https://www.internalfb.com/intern/diff/D22120410/
https://fb.quip.com/8NIHAeSVdbil
https://fb.quip.com/bpvxAulg0Smz
https://fb.quip.com/yzSqANeIxEDx
https://www.internalfb.com/intern/tasks/?t=69281096
https://fburl.com/mlhub/0jfwsvio

B9TLLD snonupuo) 061E90 snonuRue)
1ZvLL0 oney-eucbaie) LYIET D oney-eauobaey
TZILLO J21uno)-|eduobale) £L6290 J21uno)r|eduobale)y
* =
BEVLLD #3D-|eaucbxne ¥8TE9D ¥3D-eaucbae)
SZELLD snonuljuo} pue |eay ¥81E90 snonuijuo) pue |esuofiajer
6SEBLO 35vd T6LF90 asvd
n o ;m 9 n o n o S wm o oW oo N oo N o
5 & ® @ ~ = B ® B ihin ¥ § M MmN~
e - T R W W oW® W W @ B W @
5 8 5 &8 =5 5 & o e o = 8 5 9 8 O o
6 3N 103N
Z8ST190 snonuiuo)y cL8TL0 snonuijue)
o 048190 oney-{eauobale) 69PZL0 oney-{eIuobaje)
=
©
=
L 0ESTOD 12una)-jesucbaie) 808TL0 Jzunadrjeducbaie)
[7]
2 ~ ©
£
e_ 1¥8190 ¥92-1eduobae) ZI6TL0 Y9J-jesuobage)
-
=
=
]
(7]
tnlu_ 798190 SNONUIUE) pue |edt SS6TLO snonuijue) pue |exuobzie)
=
]
R_
m P6ZESD 35va 188ZLD 3svd
€
3
Q o [=] i [=] WY o [[=] W [=] "] (=] 'y = uy o W
_ P I ECEEE g 8 EEEREEREER
m] (=] (=] (=] o =] o o (=] o o o o =] o (=] o (=]
= = L3N CE
o =
@ -
% =
o g L]
=
@
o
>
1]

e Offline Results :
NE

o AUC

u 7 9
0910
0925
0905 ~ = @
2 B 5 o 7 0920 2 g a
0.900 8 2 2 E 8 © 2 g g S 8
~ i 2 = 2 o 0915 @ 8 =] @ 2
2 El = a Cl “ =]
0895 a 5 = 2
@ 0910 o
~ =4 &
o' 0.890 5’ noos
0.885
0900
0.880
0895
0875
0890
0870
w “ & - o w w w = . o w
E -]] 9 2 2 E 2 a 5 E =
= ¢ 3 3 2 ¢ = ¢ 3 5 i 2
£ 2 X c £ s =X E
£ £ g g £ £ g 9] g
st £ = £
(=]) g e 38 =) § 'E < 8
2 3 5 z B 8 3 b
© w
i 8 g ° g n g o
£ 2
0930 0.925
0925 @
2 = R § e g 2 B 8
o (=3 - [r-J
0920 =l B o 0 5 0915 2 =1 & @ =]
o E H E = s = a g S o g
[[-3 o
0915 =] = a 0910 s 2
@ a - g
— =
o' 0910 ' 0905
0.905 d 0900
0.900 0.895
0.895 0890
0890 0.885
a Fi % T 2 5 I Fl %] 2 2
& = a B 2z a
ES 2 g 5 & 3] 2 g 5 4 E
s = 8 = c £ = =1 = £
£ 8 Q s i3 E i 9 F H
S %] 5 38 S g = - a8
b= [~ = (=
H S 8 g H A 8 ;_?
- z 3 ® g 8
£ 3 & 38
k=1 Q
g £
o]
o 8}
® Online Results till now:
counter_ratio_and_continuous_attribute FBURL: hitps:/fburl comdelioidd/737nclu
10_ent_ratio / 1_base
5% 0% 5% @, Delta% e
* interest rate 26 by subsurface, by subsurface
1 DATING_HOME Com -0.8781211702
2 INTERESTED_TAB . -11373:2.2471
3 GROUPS TAB 8.2465:19.2030
4 EVENTS_TAB s ——— 42,3747:43.7170
¥ interest rate 25 by gender, by viewer conformed_gender
5 male i -0.5120£1.0976
6 female o -2.0144+2.5559
7 other -6.8850+12.2997
* interest rate 1 by subsurface, by subsurface
& DATING_HOME cw -0.2431:0.8414
9 INTERESTED_TAB D -0.8499+1.4651
10 GROUPS_TAB 4441
11 EVENTS_TAB 2 1584
w interest rate 1 by gender, by viewer_conformed_gender
12 male e -0.0505:0.7849
13 female oo | -1.185021.8184
14 other - — -9.9778:7.5814
15 receive profile view e — 0.1775+1.2680
16 active daily . 0.1333:0.3873
17 send profile view — 2.3859+15989
18 receive initial interests e 0.5857+2.1587
19 send initial interest e 0.6035:2.0754
20 matches e 0.9236+1.7808
21 send message e 1.3495:2.0904
22 messaging changeovers R 1.5368+2.0657
23 messaging conversations — 16842215706
24 Conversational Dap (CDAP) e 0.6913:1.0012
25 receive interest to initial interest — 2.6340:2.0323
26 post mateh 1x1 o 1.31741.8907
27 send interest to initial interest com -0.4190£2.6204
28 post match 1x1 initiated 2.0731:2.2053
29 post match 1x1 reciprocated e 0.3094+2.5718

Profile Attribute Sparse Feature Set

To capture the attribute preference in another way, we also create attribute id as sparse features.

1. Creation of the features:

e We decided to create sparse features conforming to the 3 categories of user profile attributes that we had
identified previously (Existence, Categorical and Continuous).

® We want to map the combination of these attributes’s values to integers and to do that we have come up with 3
separate methods:

o Existence attributes:
® \We can denote the existence of an attribute with a single bit, O for absence and 1 for presence

® \We can also assign each attribute’s bit a certain index in the overall sparse id and then simply concat
them to get the final attribute id

o Categorical attributes:

® For the low cardinality attributes we can use n bits to represent the 2" n categories that the attribute
may have’

®m We can concat the individual sets of bits with each other to get our final attribute id
o Continuous attributes:

® We can distinguish the values by placing them in buckets such that each bucket has roughly the same
number of users.

® \We index each bucket and denote the index of bucket that the attribute falls into using n bits
® Finally we concat these sets of n bits with each other to get our final attribute id

o Note: Concat takes place in a set manner and we have fixed shift values for the attributes to guarantee that
the meanings of the bits in the final id don’t change even if one of the features is removed or a new one is
added.

2. Profile attribute engagement collection

® We collect the attribute ids of the users’ engagement.

e Have the attribute id and liked/passed attribute ids for both viewer and candidate

Further steps include feature fetching, training and finally offline and online tests

