
User Attribute Engagement: a glance
Summary

The users engage with candidates daily and have an inherent set of desired attributes that they are looking for. When a
user looks at a profile and determines from the shown attributes, other than the profile pictures, whether to like or pass
a certain candidate there is a lot of information to be gained from these attributes which can be used to improve a
users’ candidate quality and overall dating experience.

An example of a user’s attributes:
- Age
- Bio
- Dating Intent
- Height
- Hometown
- Job and Employer
- Education Level
- Children Info
- Religious Info
- Languages
- Hobby
- IG connected
- Fun-fact answer
- Distance

Hypothesis

Profile attributes are important factors to help user make decision of like or pass. This assumption leads us to the next
that the attributes that are present/not present on a profile that a user likes/passes may present a pattern that can be
picked up on and used to better rank candidates.

A more detailed hypothesis

Users have preference on profile attributes. the existence and the value of the profile attributes plays an
important role when viewer make the decision of like or pass.

For some of these profile attributes, users can explicitly set preferences to filter out un-wanted candidates. The
filtering applies at the candidate retrieval stage.

However,

filters are usually used to filter out un-wanted candidates. users could still have preference among the
candidates passed the filters.

user does not always use all filters, and users set some filters as soft.

not all attributes have filters, e.g. number of photos, occupation filled, has hobby, etc

●

●

●

○

○

○

some user does not know or specify their attribute preference but the preference may shown in
engagement data

So there is opportunities for ranking to personalize the ranking through learning users preference on profile
attributes.

When users interact with dating profiles they are creating a set of implicit ratings for every profile attribute they
see and we can capitalize on this by being able to record these interactions and transform them into statistics to
have our models learn from them.

○

●

●

For exemplar purposes

Let us consider person A:

They are a picky dater and they want their partner to be as invested into the dating scene as them and they
are more likely to pick candidates that have a bio, list their smoking and drinking preferences and have at
least one hobby on their profile.

Now this person can’t set these filters explicitly so they have to go through a list of profiles that weren’t
ranked with these attributes in mind before they can choose candidates that fit closer to their actual
preference. If we were to pick up on these implicit ratings for attributes present/absent on candidate
profiles that are liked we would be able to better present candidates to our users.

●

○

○

Attribute Preference Dense Feature Set

1. Identify and create (if needed) features and meta attributes:

We take a look at the profile attributes and then we try to come up with features that would sufficiently be able
to encapsulate their properties and be helpful to the model. We came up with 3 categories for this classification
of attributes: Existence, Categorical and Continuous.

●

Existence Attributes (can also be seen as categorical since yes and no can be categories of response) that denote
whether a certain attribute has been filled or not. In this case we added new attributes that could capture
attribute existence preferences as well since some people might not engage with profiles which don’t have
attributes filled out; we extended the dataswarm pipeline to add these in dating_engagement_user_attribute
table
 For example:

has_intro

has_job

has_employer

has_hometown

has_hobby

has_height

has_language

has_story

has_fun_fact

has_ig_connected

has_multiple_photos

●

■

■

■

■

■

■

■

■

■

■

■

Categorical Attributes from the low cardinality features (limited attribute option). For example:

Education Level: [high school, college, grad school, unknown] → [1,2,3,0]

Children Info: [has, no, unknown] → [1,2,0]

Smoking Preference: [never, often, always, occasionally] → [1,2,3,4,0]

Drinking Preference: [never, often, always, occasionally] → [1,2,3,4,0]

Continuous Attribute. these attributes are real numbers. For example:

Age

Height

Intro_text_length

Num_photos

Num_dating_questions_answered

Num_hobbies

Distance

■

●

○

○

○

○

○

●

○

○

○

○

○

○

○

Code Pointer for extended dataswarm table and the diff:

 https://fburl.com/diffusion/9o2svy76

D21863638, D21854736

●

○

○
2. Capturing users attribute preferences

After we have established these attributes, we would like to gain engagement statistics in order to get user preferences
regarding these said attributes.

We decided on metrics that made the most sense to us to capture a user’s attribute engagement preferences in a
meaningful manner.

For the Existence and Categorical attribute types we used:

Counter features to keep a count of the number of likes/passes sent for a certain attribute’s
presence/absence and the separate categories it can take

These features are a count of the number of outbound likes/passes a user sends to a profile
with/without the attribute in the past 14 days.

They are categorized based on the Dating Subsurface, Category of the attribute and
Engagement Type.

eg: VIEWER_ATTRIBUTE_ENGAGEMENT_DRINKING_FREQUENCY_DH_NEVER_LIKE_14D is a categorical
user attribute engagement counter feature which counts the number of likes a viewer sent in
the past 14 days from the dating home subsurface on profiles that had drinking frequency as
“NEVER”.

Ratio features to keep the like rates for these attributes.

These features capture the like rate of the user’s engagement for the specific subsurface and
feature category in the past 14 days.

eg: VIEWER_ATTRIBUTE_ENGAGEMENT_SMOKING_FREQUENCY_DH_NEVER_LIKE_RATE_14D is a
categorical user attribute engagement ratio feature which has the ratio of likes sent in the past
14 days form the dating home subsurface to candidates that have the smoking frequency as
never. (feature::subsurface::attribute_val::like / feature::subsurface::attribute_val::(like+pass))

For the Continuous attribute types we used the following statistics:

●

○

■

□

□

□

■

□

□

○

https://fburl.com/diffusion/9o2svy76

avg

std

p50

count

min

max

e.g: VIEWER_ATTRIBUTE_ENGAGEMENT_INTRO_TEXT_LENGTH_ALL_AVG_LIKE_14D is a continuous user
attribute engagement feature which measures the average length of intro text bios of all the
candidates that the user liked in the past 14 days from all subsurfaces.

■

■

■

■

■

■

■

Dense Feature Set Implementation

1. Converting the counters/ratio of existence/categorial types and stats of continuous types
into hive table schema of <user id, map<feature id, feature value>> for building laser tier

We start converting these features that we just created in dataswarm into laser retrievable format or turning them
into maps with the format map<feature_ids, feature_vals>

●

We deterministically generate our feature ids in the pipeline itself by using a base_id

To this we add specific offsets that are fixed for a certain feature and subsurface and then increment it for
engagement type and attribute values, thus guaranteeing unique feature ids as long as the offsets are set
with enough width.

a.

b.

The idea was to make it really easy to scale this algorithm for other features sets by reusing our feature id
generation logic and make it even easier to add new attributes by simply adding a feature block like this to the
attribute set:

●

 "education_level": {

 "col_name": "education_level",

 "type": "VARCHAR",

 "candidate_transform": """

 CASE

 WHEN education_level IS NOT NULL AND education_level != 'prefer_not_to

 THEN education_level

 ELSE 'unknown'

 END

 """,

 "is_category": True,

 "categories": ["unknown", "grad_school", "college", "high_school"],

 "is_used_in_engagement_counter": True,

 "feature_id_offset": 0,

 },

We have accounted for enough gap between the ids that in the future if we wish to add more features,
subsurfaces or continuous statistics we would just need to add those to our original keysets and the
algorithm would generate ids and insert them into the tables on its own. Hence it is super easy to scale and
can be reused for other feature sets as well since we define a general function that takes these keysets and
base ids as arguments.

We also guarantee deterministic dictionary access hence the ids won’t spuriously change.

After creating our laser source table in hive we can create a laser tier for our features.

○

○

●

https://mail.python.org/pipermail/python-dev/2017-December/151283.html

○

2. Create feature fetchers

Create Feature Fetchers in cpp , php and mocha

Add the required unit tests and local testing using these guides Dating Live Feature Fetcher Design Feature
Fetcher Comparison

Side task worked on: Adding a new feature id retrieval logic T69281096

●

●

●

Training models and conducting offline evaluations of these new dense
features:

Now that we have our features ready we want to backfill our laser tables with enough data for our model
training.

After backfilling the laser tables we inject those features into the mtml_model_training_random_noise and
table dating_home_mtml_training, using the offline_feature_injection_with_feature_id.py script Xiaoye
wrote.

After we’ve injected the features into out training and eval datasets we can launch model training from the
fblearner UI https://fburl.com/mlhub/0jfwsvio

●

●

●

https://www.internalfb.com/intern/diff/D22381187/
https://www.internalfb.com/intern/diff/D22120410/
https://fb.quip.com/8NIHAeSVdbil
https://fb.quip.com/bpvxAulg0Smz
https://fb.quip.com/yzSqANeIxEDx
https://www.internalfb.com/intern/tasks/?t=69281096
https://fburl.com/mlhub/0jfwsvio

Offline Results :

NE

AUC

●

●

○

■

○

■

Online Results till now:●

Profile Attribute Sparse Feature Set

To capture the attribute preference in another way, we also create attribute id as sparse features.

1. Creation of the features:

We decided to create sparse features conforming to the 3 categories of user profile attributes that we had
identified previously (Existence, Categorical and Continuous).

We want to map the combination of these attributes’s values to integers and to do that we have come up with 3
separate methods:

Existence attributes:

We can denote the existence of an attribute with a single bit, 0 for absence and 1 for presence

We can also assign each attribute’s bit a certain index in the overall sparse id and then simply concat
them to get the final attribute id

Categorical attributes:

For the low cardinality attributes we can use n bits to represent the 2^n categories that the attribute
may have’

We can concat the individual sets of bits with each other to get our final attribute id

Continuous attributes:

We can distinguish the values by placing them in buckets such that each bucket has roughly the same
number of users.

We index each bucket and denote the index of bucket that the attribute falls into using n bits

Finally we concat these sets of n bits with each other to get our final attribute id

Note: Concat takes place in a set manner and we have fixed shift values for the attributes to guarantee that
the meanings of the bits in the final id don’t change even if one of the features is removed or a new one is
added.

●

●

○

■

■

○

■

■

○

■

■

■

○

2. Profile attribute engagement collection

We collect the attribute ids of the users’ engagement.

Have the attribute id and liked/passed attribute ids for both viewer and candidate

●

●

Further steps include feature fetching, training and finally offline and online tests

